Thursday, November 14, 2019
Essay --
Benchmark II 2 to 6 players Object: Collect as many Princess Points and have the highest amount at the end of the game! Setting up: Picking Your Princess-- Choose a princess! You have a choice of seven princesses: Cinderella, Belle, Ariel, Jasmine, Mulan, and Ms. Beideman. The probability of choosing your favorite princess, Ms. Beideman is 1/7 or 14.29% Princess Points -- Place all princess point chips off to the side, for later use in the game. At the end of the game, princess points will count towards winning the game! Cards -- Separate the cards into four decks: Career Cards, Salary Cards, Castle Cards, and Chariot Cards. Money -- Have all the players spin the dial once. The player with the highest number will be the banker. This player is in charge of all the Princess points being exchanged to and from the bank. There are five spaces on the dial. This means that the probability of being the banker no matter what, otherwise known as landing on the number five, is ââ¦â¢. The probability of not being the banker no matter what, otherwise known as landing on the number one, is also ââ¦â¢. Imagine three people are playing the game, and two of those people have landed on the numbers 1, 4, and 2. The fourth personââ¬â¢s chance of becoming banker is ââ¦â¢, because the third person can only win the title by landing on 5. The third person has the same chance of winning the title as losing the title: the chance that she does not become banker is ââ¦â¢, since the only way she could not become banker is if she landed on 3. Playing the Game: What You Do on a Turn -- On the beginning of your turn, spin the wheel. The dial is numbered from 1-5. Remember the number your dial landed on, then spin again. Next, add the two numbers received from spinning t... ...ces will also be included. 17 spaces will be neutral, which neither give nor take Princess Points. The playerââ¬â¢s chance of landing on a neutral space is 17/27, or 22.97%. Dependent Probability Each card has their own different probabilities of being able to choose a card. This probability is dependent on the amount of players and cards already removed from the deck. Each category of cards includes 10 individual cards. Binomial Probability Spaces including gaining Princess Points and neutral spaces will be included in binomial probability. Both gaining Princess Points and neutral spaces have 17 spaces on the board individually. Therefore the probability of landing on one of these spaces is 34/75, or 45.33% Venn Diagram Available Jobs Depending on Degree Thank you, and enjoy the game! Your gamemakers, Shira and Jocelyn May the odds be ever in your favor.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.